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Preface 

Overview 

This document mainly introduces the new driver structure of CIF and ISP of Rockchip 

chipset, and how to write/port sensor driver, how to apply demos and tools test in the 

upper layer base on it. 

In order to meet customization needs, the CIF, ISP and Camera drivers described in 

this document all meet V4L2 standard interface as much as possible, providing a richer 

configuration. At the same time, there are higher requirements for customers writing and 

porting drivers. Customers need to know more about the underlying topology, V4L2 

related concepts and so on. 

Product version 

Chipset Kernel CIF ISP 

PX3SE 4.4 Yes NO 

RK312x 4.4 Yes NO 

RK3288 4.4 Yes Yes 

RK332x 4.4 Yes Yes 

RK3399 4.4 NO NO 

 

Applicable to object  

This document is mainly suitable for the following engineers:  

 Field application engineers 

 Software development engineers 
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1 Camera and driver introduction 

1.1  Driver version 

Camera in this document refers to CIF or ISP of Rockchip chips and the sensor 

connected to them. And the CIF and ISP driver described in this document refer to new 

version driver for V4L2 Framework Standards which are based on Media Controller, Async 

sub device, vb2. 

The driver versions and support list are as follows. 

Driver name Type Kernel version Platform 
Whether it was 
decribed in this 

document 

Rkisp1 ISP 4.4 Linux Yes 

Rkcif CIF 4.4 Linux Yes 

Oneframe CIF 3.10 or 4.4 Linux No 

Rk-isp10 ISP 4.4 Linux 
Yes, see the note for 

details [1] 

Table 1 Driver version 

1.2  Acronyms 

 3A, refers to auto focus (AF), auto exposure (AE) and auto white balance (AWB) 

algorithms, or algorithms .so library 

 Async Sub Device, specifically refers to V4L2 sub-device under Media Controller 

structure. 

 Bayer Raw, or Raw Bayer, indicates the format of RGGB, BGGR, GBRG, GRBG 

output by device (Sensor or ISP), or the data frame of the format. 

 Buildroot, specifically refers to a series of Linux SDK base on Buildroot[2]  released 

by Rockchip.    

 CIF, that is camera interface which is used to receive data from sensor and save it 

to memory. 

 DVP, is a parallel interface, short for Digital Video Port 

 Entity, in this document, it refers to each node under Media Controller framework. 

                                        
1 [] Rk-isp10 is still in support, but it does not use the structure of media controller, async sub 
device, is not the focus of this document. 
2 [] Buildroot see its official website: https://buildroot.org/ 
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 FCC or FourCC, that is Four Character (FCC) codes, and it refers to the image 

format represented by 4 characters in Linux Kernel. For details, see FourCC. 

 HSYNC, Line sync signal 

 ISP, Image Signal Processing, used to receive and process images 

 IOMMU, Input-Output Memory Management Unit, in this document, it means iohmu 

module in Rockchip chips, it is used to map physically fragmented memory pages 

into visible contiguous memory of cif or isp. 

 IQ, Image Quality, in this document, it refers to the xml corresponding to IQ or IQ 

debugged by bayer raw camera. It is used for 3A tunning 

 Media Controller, a media framework for Linux kernel 

 MIP, refers to MIPI protocol in this document. 

 MIPI-DPHY refers to MIPI-DPHY protocol, or the controller that complies with MIPI-

DPHY protocol of Rockchip chips in this document. 

 MP, Main Path, refers to an output node of Rockchip ISP, which can output full-

resolution images and generally used for taking pictures and grabing Raw graphs. 

 PCLK is Pixel clock 

 Pipeline refers to the link formed by the interconnection of each entity under media 

controller in this document. 

 SP, Self Path, refers to an output node of Rockchip ISP, which can only output 

1080p resolution and generally used for preview. 

 Userspace, that is Linux user space (relative to Linux kernel space), specifically 

refers to user layer or the program executed at user layer in this document. 

 V4L2, Video4Linux2, the video processing module of Linux kernel 

 VIP refers to Video Input Processor in Rockchip chips, it once used as an alias for 

CIF and it is no longer used. 

 VSYNC, Field sync signal
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2 CIF driver and dts configuration 
This chapter mainly introduces CIF driver and dts configurations and the test 

verification of CIF driver on each chip in detail. 

CIF is a camera interface, once used the name of VIP (Video Input Processor) in 

Rockchip series chips. Both of them refer to camera interface. 

CIF support information on Linux SDK of each chip is as follows: 

Platform 
DVP 

interface 
MIPI CSI Crop Scale Mode 

Maximum 
resolution 

iommu 

PX3SE support Not support support Not support Oneframe  No 

RK3288 support 
Waiting for 

verification 
support Not support Oneframe  Yes 

RK3326 support 
Waiting for 

verification 
support Not support Oneframe  Yes 

Table 2 CIF verification of each chip 

Notice： 

 In oneframe mode, if image resolution is higher, such as 1080p, fps may only 

reach 15fps. 

 MIPI CSI, on some platforms, CIF can receive images transmitted from MIPI CSI 

 If there is no iommu function and buffer is allocated in mmap mode during reqbuf, 

kernel is required to retain a larger CMA size。You can modify in kernel defconfig 

as follows： 

CONFIG_CMA_SIZE_MBYTES=64 

2.1  CIF driver code introduction 

The CIF kernel driver code is located in drivers/media/platform/rockchip/cif/ directory, 

and the corresponding device tree binding document is located in 

Documentation/devicetree/bindings/media/rockchip-cif.txt. Whether to compile is 

controled by compiling switch CONFIG_VIDEO_ROCKCHIP_CIF. 

The CIF driver performs hardware configuration, frame interrupt processing, and buffer 

rotation according to media controller, v4l2, and vb2 frameworks. The function contents 

of each file are as follows 
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$ tree drivers/media/platform/rockchip/cif/ 

drivers/media/platform/rockchip/cif/ 

├── capture.c   //Mainly perform hardware configuration, related callback under v4l2, 

vb2 framework, frame interrupt processing 

├── dev.c   // Mainly perform probe, sub-device asynchronous (Async) registration, 

iommu and clk management 

├── dev.h   // Driver related structure definition 

├── regs.h   // Register macro definition 

 

 CIF oneframe mode, in oneframe mode, each time the driver receives a frame 

interrupt, the next frame buffer address is set in the interrupt handler function, and 

then the next frame data is collected. 

 CIF pingpong(Double buffers)mode. The driver has not been implemented. 

 

2.2  CIF dts configuration 

Please refer to Documentation/devicetree/bindings/media/rockchip-cif.txt first. This 

document will be updated as the driver code is updated. In dtsi of the chip, the basic 

information of cif is generally configured, including but not limited to: 

 Reg, register offset address 

 Clocks, the clocks needed. Clock-names need to be the same as defined in the 

driver 

 Reset, CIF can be reset with CRU software 

 Interrupts 

 Iommu, if there is iommu in cif, iommu will be enabled. 

 

2.2.1  Board level configuration 

Firstly, confirm whether there is a new cif driver node definition in the corresponding 

chip-level dtsi. Please use compatible to distinguish between old and new cif drivers. 

 The old cif drive 
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compatible = "rockchip,cif"; 

 The new cif driver 

compatible = "rockchip,rk3xxx-cif"; 

Then confirm whether cif has iommu function. If there is an iommu node, it needs to be 

set to "okay" state. 

Finally, you need to define Remote Port
[1]

 which connects sensor to CIF. During kernel 

initialization process, sensor registers asynchronously with CIF. The two are finally bound 

according to Remote Port information in dts. 

Example 1, cif dts configuration on px3se evb board 

CIF nodes are defined in arch/arm/boot/dts/rk312x.dtsi,  

        cif_new: cif-new@1010a000 { 

                compatible = "rockchip,rk3128-cif"; 

                reg = <0x1010a000 0x200>; 

                clocks = <&cru ACLK_CIF>, <&cru HCLK_CIF>, 

                         <&cru SCLK_CIF_OUT>; 

                clock-names = "aclk_cif", "hclk_cif", 

                              "sclk_cif_out"; 

                resets = <&cru SRST_CIF0>; 

                reset-names = "rst_cif"; 

                interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>; 

                /* rk312x has not iommu attached */ 

                /* iommus = <&cif_mmu>; */ 

                power-domains = <&power RK3128_PD_VIO>; 

                status = "disabled"; 

        }; 

Board level configuration is in arch/arm/boot/dts/px3se-evb.dts, need to reference 

cif_new, and modify status state to okay, and finally add port sub-node. 

&cif_new { 

        status = "okay"; 

                                        
1 [] More information about Remote Port see Documentation/devicetree/bindings/media/video-
interfaces.txt 
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        port { 

                cif_in: endpoint { 

                        remote-endpoint = <&adv7181_out>; 

                        vsync-active = <0>; 

                        hsync-active = <1>; 

                }; 

        }; 

}; 

The Port subnode defines cif_in node and declares that the remote node to which it is 

linked is adv7191_out. Because adv7181 uses dvp interface, it also specifies the valid 

state of vsync, hsync here, where 0 means active low and 1 means active high. 

2.3  CIF Driver debug and frequently asked questions 

This chapter describes how to judge the status of CIF device, how to turn on debug 

switch, and use v4l2-ctl to capture frames, use mplayer to play back images, gstreamer 

previews, and frequently asked questions. 

Commands in this chapter are based on px3se-evb boards. Other boards may be 

different. In particular, the serial numbers of /dev/media0 and /dev/video0 device nodes 

may be different. Even the serial number of video0 device may be changed on px3se-evb 

board. Please refer to the method of how to obtain video device number in the chapter of 

whether cif probes successfully or not. 

2.3.1 Whether cif probes successfully or not 

If CIF probes succesfully, there will be video and media devices in /dev/ directory. For 

example, /dev/media0
[1] 

device. 

There may be several /dev/video devices in a system. You can query video node 

corresponding to cif through the node under /sys. 

[root@px3se:/]# grep -H '' /sys/class/video4linux/video*/name 

/sys/class/video4linux/video0/name:stream_cif 

It can be seen that cif device corresponds to video0 node, in other words, /dev/video0 

                                        
1 []If there are multiple media devices, the number is not necessarily 0. For example, if CIF and 
ISP are enabled at the same time on 3288, there will be two media devices: /dev/media0 and 
/dev/media1. 
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is cif device. 

In addition, you can also print topology through media-ctl to see if pipeline is normal. 

Please refer to media-ctl and topology. 

If there are bugs, please check cif-related error log from kernel log. E.g, 

[root@px3se:/]# dmesg | grep -i cif 

Note： 

 If you need to report cif bugs or issues to Rockchip, please provide the full kernel 

log. The more complete the Log, the more helpful to analyze problems. 

 

2.3.2 Determine if sensor and CIF are bound 

As mentioned above, CIF and sensor are asynchronously loaded (probe) respectively. If 

both drivers are loaded successfully, they will be bound together. At this point, it will 

prompt accordingly in kernel log. 

[root@px3se:/]# dmesg | grep Async 

[    2.681364] rkcif: Async subdev notifier completed 

If you see “Async subdev notifier completed”, it means sensor and CIF are successfully 

bound. 

At the same time, users can still view media topology, there should be cif and sensor 

two entities. Please refer to media-ctl and topology. 

If asynchronous registration is found to be unsuccessful, that is, there is no "Async 

subdev notifier completed" log, please check whether cif and sensor probe are wrong. 

Frequently encountered case is sensor driver power-on timing is wrong, Sensor I2C 

communication failure. 

 

2.3.3 Turn on debug switch 

The CIF driver contains some v4l2_dbg() logs. The log switch can be turned on by 

command, as follows. 

echo 1 > /sys/module/video_rkcif/parameters/debug 

Turned on vb2 related log which mainly includes buffer rotation, such as reqbuf, qbuf, 

dqbuf and buffer state changes, as follows. Note that vb2 module switch is a general 
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switch. Other related logs that use vb2 (such as VPU/ISP, etc.) will also enable output. 

echo 7 > /sys/module/videobuf2_core/parameters/debug 

Turn on v4l2 related log, such as ioctl call. The following command will turn on all v4l2 

related logs. 

echo 0x1f > /sys/class/video4linux/video0/dev_debug 

It is also possible to turn on only a small part of log. The following macro
[1]

 defines 

which logs each bit will enable. Turn on the bit corresponding to required log. 

/* Just log the ioctl name + error code */ 

#define V4L2_DEV_DEBUG_IOCTL            0x01 

/* Log the ioctl name arguments + error code */ 

#define V4L2_DEV_DEBUG_IOCTL_ARG        0x02 

/* Log the file operations open, release, mmap and get_unmapped_area */ 

#define V4L2_DEV_DEBUG_FOP              0x04 

/* Log the read and write file operations and the VIDIOC_(D)QBUF ioctls */ 

#define V4L2_DEV_DEBUG_STREAMING        0x08 

/* Log poll() */ 

#define V4L2_DEV_DEBUG_POLL             0x10 

 

2.3.4 Frequently ask questions and answers

                                        
1 []These macros are defined in kernel header file include/media/v4l2-ioctl.h 
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3 RKISP1 driver and dts configuration 
ISP is more complicated than CIF, and its functions are richer. This chapter mainly 

introduces driver code structure, dts configuration, and debug method of RKISP1. Like 

CIF, ISP driver conforms to media controller, v4l2, and vb2 frameworks, and is 

independent of mipi-dphy and sensor and is registered asynchronously. 

3.1  RKISP1 Driver code structure and its block diagram 

RKISP1 driver code described in this chapter is located in 

driver/media/platform/rockchip/isp1/ directory of kernel. It mainly implements hardware 

configuration, interrupt processing, control buffer rotation, control subdevice (such as 

mipi dphy and sensor) to power on and off according to v4l2 / media framework. Briefly 

introduce the contents of each file in the driver as follows. 

$ tree drivers/media/platform/rockchip/isp1/ 

drivers/media/platform/rockchip/isp1/ 

├── capture.c  // Include mp/sp configuration and vb2, frame interrupt processing 

├── dev.c  // Contains probe, asynchronous registration, clock, pipeline, iommu and 

media/v4l2 framework 

├── isp_params.c  // 3A Related parameters setting 

├── isp_stats.c  // 3A Related statistics 

├── regs.c  // Registers related read and write operations 

├── rkisp1.c  // Corresponding to isp_sd entity node, including receiving data from 

mipi, crop function 

 

$ ls drivers/phy/rockchip/phy-rockchip-mipi-rx.c  

drivers/phy/rockchip/phy-rockchip-mipi-rx.c # mipi dphy driver 

The block diagram below briefly describes the internal structure of ISP. 
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Figure 1 RKISP1 brief block diagram 

The above block diagram is mainly used to reflect the functional characteristics of ISP 

input and output for users to understand. 

 ISP can adapt DVP interface 

 ISP can adapt MIPI interface, but need mipi dphy 

 After an image is input to ISP, it can be divided into two MP and SP output. MP and 

SP are the same image, but resize, crop can be different, and the output format 

can be different. 

 MP, MP is short for Main Path. It can output full resolution images up to 4416x3312 

 MP can output yuv or raw images, and only MP can output raw images 

 SP, that is Self Path. Supports up to 1920x1080 resolution 

 SP can output yuv or rgb images, but can not output raw images 

 Both MP and SP have the function of crop and resize, and they do not affect each 

other. 

Output device 
Maximum 
resolution 

Support format Crop/Resize 

SP 1920 x 1080 YUV, RGB Support 

MP 4416 x 3312 YUV, RAW Support 

Table 3 MP and SP output function comparison 
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3.2  RKISP1 dts configuration 

Like CIF, there is also a complete document of RKISP1 DTS binding located in 

Documentation/devicetree/bindings/media/rockchip-isp1.txt. Please refer to this 

document first, it will keep up with the driver update. When a RK Linux SDK is released, 

if the chip supports ISP, the rkisp1 node is already defined in dtsi, such as the isp node in 

rk3288-rkisp1.dtsi, the rkisp1_0, rkisp1_1 node in rk3399.dtsi. The following table 

describes the information of each chip ISP. 

 
ISP 

quantity 
Dts node name 

Corresponding mipi 
dphy 

Iommu node 

RK3288 1 isp RX0  or RX1 Support, isp_mmu 

RK3399 2 

rkisp1_0 RX0 Support, isp0_mmu 

rkisp1_1 TX1RX1 Support, isp1_mmu 

Table 4 ISP dts node information of each chip 

Note： 

 RK3288.dtsi also registered isp node, but it corresponds to the old driver. The new 

driver is registered in the rk3288-rkisp1.dtsi file. Please include this file in board 

configuration 

 Multiple isp nodes are also registered in RK3399.dtsi. Please note what this chapter 

described are rkisp1_0 and rkisp1_1. 

 Iommu needs to be enabled or disabled with isp 

 If there are multiple isp (such as rk3399), please note to choose the right iommu 

node  

3.2.1 Board level configuration of Rkisp1 dts  

The board-level configuration is similar to CIF. The isp, mipi-dphy, and sensor are 

separately defined nodes. The three are connected to each other through remote 

endpoints. On the block diagram, mipi-dphy connects isp and sensor. The following 

example is based on the dts board level configuration on RK3399 excavator and can be 

found in the file rk3399-sapphire-excavator-edp.dts. On this board, both ISPs of RK3399 

are enabled, only take rkisp1_0 as an example here. 

First, set rkisp1_0 node to "okay" state. 
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&isp0 { 

        status = "disabled"; 

}; 

 

&rkisp1_0 { 

        status = "okay"; 

        port { 

                #address-cells = <1>; 

                #size-cells = <0>; 

                isp0_mipi_in: endpoint@0 { 

                        reg = <0>; 

                        remote-endpoint = <&dphy_rx0_out>; 

                }; 

        }; 

}; 

Note,  

 The node state of other versions of isp driver needs to be disabled. Otherwise two 

different drivers will conflict 

 The rkisp1_0 is defined in the Port node to be interconnected with dphy_rx0_out 

node. 

Secondly, the iommu corresponding to rkisp1_0 also needs to be "okay" status. 

&isp0_mmu { 

        status = "okay"; 

}; 

Thirdly, sensor is mipi interface, so mipi dphy needs to be enabled as well. 

&mipi_dphy_rx0 { 

        status = "okay"; 

        ports { 

                #address-cells = <1>; 

                #size-cells = <0>; 

                port@0 { 
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                        reg = <0>; 

                        #address-cells = <1>; 

                        #size-cells = <0>; 

                        mipi_in_ucam0: endpoint@1 { 

                                reg = <1>; 

                                remote-endpoint = <&ucam_out0>; 

                                data-lanes = <1 2>; 

                        }; 

                }; 

                port@1 { 

                        reg = <1>; 

                        #address-cells = <1>; 

                        #size-cells = <0>; 

                        dphy_rx0_out: endpoint@0 { 

                                reg = <0>; 

                                remote-endpoint = <&isp0_mipi_in>; 

                        }; 

                }; 

        }; 

}; 

Note： 

 Dphy connects both isp and Sensor. So it has two endpoints. Mipi_in_ucam0 is 

connected to Sensor, and dphy_rx0_out is connected to isp 

 The data-lanes is declared in mipi_in_ucam0, indicating that sensor uses two lanes. 

If there are 4 lanes, it should be defined as <1 2 3 4>. And so on. At last, board-

level sensor node is defined, and the port sub node needs to be declared to connect 

to dphy_rx0_out of mipi dphy. 

3.3  RKISP1 debug and frequently asked questions 

This chapter mainly introduces how to debug ISP and judge whether driver is loaded 

successfully and frequently asked questions and answers. Because ISP is similar to CIF in 
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structure and uses the same framework, users can also refer to CIF driver debug and 

frequently asked questions. 

3.3.1 Driver probe status judgement 

If RKISP1 probe succesfully, there will be video and media devices in /dev/ directory. 

There may be multiple /dev/video devices in a system. You can query the video node 

registered by RKISP1 through /sys. The following is the execution command and result
[1]

 

(with deletion) on RK3399 Dru Chrome Table. 

localhost ~ # grep '' /sys/class/video4linux/video*/name 

/sys/class/video4linux/video3/name:rkisp1_selfpath 

/sys/class/video4linux/video4/name:rkisp1_mainpath 

/sys/class/video4linux/video5/name:rkisp1-statistics 

/sys/class/video4linux/video6/name:rkisp1-input-params 

The RKISP1 driver registers four devices, selfpath, mainpath, statistics, and input-

params. The first two are for frame output, and the last two are for 3A parameter setting 

and statistics. By looking up the sys node under video4linux, we got RKISP1 information 

of RK3399 Dru as shown in the following table. 

Device node Name Functions 

/dev/video3 SP(Self Path) Video output 

/dev/video4 MP(Main Path) Video output 

/dev/video5 Statistics 3A statistics 

/dev/video6 Input-params 3A parameter settings 

Table 5 Rkisp1 registered video devices 

Note： 

 Rkisp1 driver registers four /dev/video devices with continuous numbers. 

 If the two isps of RK3399 platform are enabled at the same time, a total of 8 

/dev/video devices will be registered. The first 4 belong to one isp and the last 4 

belong to another isp. It is not possible to distinguish the order of two isp 

                                        
1 [] 不同的板子返回会有差异，特别是当 VPU/CIF 等设备也有启用时。他们都是基于 v4l2 框架。 
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registrations by software. 

 In this example, the video number starts with 3. Because there are still vpu devices 

occupying 0, 1, 2 three video nodes 

Users can also print topology through media-ctl to see if pipeline is normal. Please refer 

to media-ctl and topology. 

If the above two methods return errors, please check kernel log for cif-related error 

log. E.g, 

[root@px3se:/]# dmesg | grep -i isp 

Note： 

 If users need to report ralated bugs or issues to Rockchip, please provide the full 

kernel log. The more complete the Log, the more helpful to analyze problems. 

3.3.2 Judge whether sub-device is successfully bound 

Please use media-ctl print topology to see if the sensor registered by dts are 

asynchronously registered as an Entity. And when all sensors are registered, kernel will 

print the following log. 

localhost ~ # dmesg | grep Async 

[    0.682982] rkisp1: Async subdev notifier completed 

If there is no Async subdev notifier completed this line log in kernel, or the topology 

does not match expected, please first check whether the sensor has an error, and 

whether I2C communication is successful. 

3.3.3 Turn on debug switch 

We will introduce three debugging switches, v4l2_dbg switch for rkisp1 driver, log 

switch for vb2 module, and log switch for v4l2 frame layer. 

The Rkisp1 driver contains some v4l2_dbg, such as format, size parameter settings, 

and dropped frames in interrupt, as follows 

echo 1 > /sys/module/video_rkisp1/parameters/debug 

The log switch of Vb2 module and v4l2 frame layer is the same as CIF. Please refer to 

turn on debug switch. The two points as follows have to note. 

 All modules that use vb2, such as isp, vpu, cif, are enabled and output by vb2 log 

switch. 
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 Log of V4l2 framework layer is for a specific /dev/video node, so only certain video 

devices are enabled. For information on how to find video device required by users, 

please refer to the probe driver status judgment chapter. 

3.3.4 Frequently ask questions and answers
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4 Sensor driver development and port  
The sensor driver is located in drivers/media/i2c directory. Note that the sensor driver 

described in this chapter are with media controller attribute, so the driver in the 

drivers/media/i2c/soc_camera directory is not applicable. 

The sensor driver is completely independent of CIF or RKISP1 driver, the two are 

registered asynchronously, and finally the connection is established via remote-endpoint. 

Therefore, the sensor driver described in this chapter applies to both CIF and RKISP1. 

Under Media Controller structure, sensor is generally used as a sub-device and linked 

to cif, isp or mipi phy via a pad. This chapter mainly introduces the sensor driver code
[1]

, 

dts configuration, and how to verify the correctness of sensor driver. 

This chapter summarizes the development of sensor driver development into five parts. 

 Write power-on sequence according to the datasheet, including vdd, reset, 

powerdown, clk, etc. 

 Configure sensor registers to output the desired resolution and format. 

 Write the callback function required by struct v4l2_subdev_ops, generally including 

set_fmt, get_fmt, ov5695_s_stream 

 Add v4l2 controller to set such as fps, exposure, gain, test pattern 

 Write .probe() function and add media control and v4l2 sub device initialization 

code 

As a good habit, after completing driver encoding, you need to add the corresponding 

documentation. You can refer to Documentation/devicetree/bindings/media/i2c/. The 

board level dts can be quickly configured according to this document. 

In the board level dts, following items are generally required when using sensor driver: 

 Configure correct clk, io mux 

 Set regulator and gpio required for power-on sequence according to the schematic 

 Add a port sub node to establish a connection with cif or isp 

This chapter will take ov5695 and ov2685 as examples, and simply analyzes sensor 

driver. 

                                        
1 [] Sensor driver development requires users to understand some basic knowledge of v4l2 
framework. This chapter only briefly analyzes and describes outline based on the existing code. In 
the actual development process, you may encounter various problems, most of which cannot be 
explained here. 
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4.1 Power-on timing sequence 

Different sensors have different power-on timing requirements, such as OV Camera. 

Most of OV Camera may not have strict timing requirements. As long as mclk, vdd, reset 

or powerdown status is correct, I2C communication can be performed correctly and 

images can be output. However, there are still a small number of sensors that have strict 

requirements for power-on. For example, OV2685 must be powered on in strict timing 

sequence. 

In dataSheets provided by sensor manufacturer, there are usually power-on sequence 

diagrams, which only need to be configured in order. Take OV5695 as an example, where 

__ov5695_power_on() is used to power up sensor. As follows (with deletion). 

static int __ov5695_power_on(struct ov5695 *ov5695) 

{ 

        ret = clk_prepare_enable(ov5695->xvclk); 

        if (!IS_ERR(ov5695->reset_gpio)) 

                gpiod_set_value_cansleep(ov5695->reset_gpio, 1); 

        ret = regulator_bulk_enable(OV5695_NUM_SUPPLIES, ov5695->supplies); 

        if (!IS_ERR(ov5695->reset_gpio)) 

                gpiod_set_value_cansleep(ov5695->reset_gpio, 0); 

        if (!IS_ERR(ov5695->pwdn_gpio)) 

                gpiod_set_value_cansleep(ov5695->pwdn_gpio, 1); 

        /* 8192 cycles prior to first SCCB transaction */ 

        delay_us = ov5695_cal_delay(8192); 

        usleep_range(delay_us, delay_us * 2); 

        return 0; 

} 

The power-on sequence of OV5695 is briefly described as follows 

 First provide xvclk (mclk) 

 Next enable reset pin  

 Each VDD power on. Regulator_bulk is used here for vdd, vodd, avdd are not 

strictly ordered. If there are strict requirements between vdd, it need to be handled 
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separately, please refer to OV2685 driver code. 

 After Vdd is powered on, cancel Sensor Reset and powerdown status. Reset and 

powerdown may only need one, if sensor package is different, there may be 

differences 

 Finally, according to timing requirements, after 8192 clk cycles, power-on is 

completed. 

Note that although many sensors can work when do not follow the datasheet 

requirements, the timings recommended by manufacturer are undoubtedly the most 

reliable. 

Similarly, there will be a Power Down Sequence in the datasheet, which is also 

available on request. 

4.1.1 Wether power-on sequence is correct 

During .probe() process, it will try to read chip id, such as ov5695_check_sensor_id() 

of ov5695. If chip id can be read correctly, it is generally considered that power-on 

sequence is correct and sensor can perform i2c communication normally. 

4.2  Sensor initialization registers list 

In OV5695 and OV2685, struct ov5695_mode and struct ov2685_mode are defined to 

indicate different initialization modes of sensor. Mode can include resolution, mbus code, 

register initialization list, and so on. 

Registers initialization list, please fill in directly according to manufacturers. It should 

be noted that the list ends with REG_NULL. 

4.3  V4l2_subdev_ops callback function 

V4l2_subdev_ops callback function is the core of logic control in sensor driver. The 

callback function includes a lot of functions, you can check the kernel code 

include/media/v4l2-subdev.h for details. It is recommended that sensor driver include at 

least the following callback function. 

 .open, in this way the upper layer can open /dev/v4l-subdev? node. When the 

upper layer needs to set v4l control separately for sensor, .open() must be 

implemented. 

 .s_stream, that is, set stream, including stream on and stream off, generally 
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configure registers here to output images. 

 .enum_mbus_code, enumerate driver-supported mbus_code 

 .enum_frame_size, enumeration driver supported resolution 

 .get_fmt, returns format/size selected by current sensor. If .get_fmt is missing, 

media-ctl tool cannot view the fmt currently configured by sensor entity. 

 .set_fmt, set format/size of sensor 

In the above callback, .s_stream stream_on is more complicated. In ov5695 driver 

code, it includes pm_runtime enable (wake up and power up), configure control 

information (v4l2 control may be configured when sensor is powered off) that is 

v4l2_ctrl_handler_setup(), and finally write to stream on of register. 

4.4  V4l2 controller 

When fps, exposure, gain, and blanking need to be configured, the part of v4l2 

controller is necessary. In the OV5695 driver code, 

 ov5695_initialize_controls(), used to declare which controls are supported, and set 

the maximum and minimum information. 

 Struct v4l2_ctrl_ops, contains ov5695_set_ctrl() callback function to respond to the 

settings of upper layers 

4.5  Probe function and media entity, v4l2 subdev 

registration 

In the Probe function, firstly parse the dts to get the information such as regulator, 

gpio, clk, etc. which is used to sensor power on and off. Secondly, register media entity, 

v4l2 subdev, and v4l2 controller information. Note that the registration of v4l2 subdev is 

asynchronous. Below are some key functions call. 

 v4l2_i2c_subdev_init(), register as a v4l2 subdev with a callback function in the 

parameter 

 ov5695_initialize_controls(), initialize v4l2 controls 

 media_entity_init(), registered as a media entity, OV5695 has only one output that 

is Source Pad 

 v4l2_async_register_subdev(), declare that sensor needs to be registered 

asynchronously. Since RKISP1 and CIF both use asynchronous registration of sub 
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devices, this call is required. 

4.6   A dts example 

The dts configurations of snsor are similar. According to the hardware design, it is 

mainly included pinctl (iomux), clk, gpio, and remote port. 

The following example is OV5695 dts node on RK3399 Dru Chrome Tablet 

        wcam: camera@36 { 

                compatible = "ovti,ov5695"; 

                reg = <0x36>; 

                pinctrl-names = "default"; 

                pinctrl-0 = <&wcam_rst &test_clkout1>; 

                clocks = <&cru SCLK_TESTCLKOUT1>; 

                clock-names = "xvclk"; 

                avdd-supply = <&pp2800_cam>; 

                dvdd-supply = <&pp1250_cam>; 

                dovdd-supply = <&pp1800_s0>; 

                reset-gpios = <&gpio2 5 GPIO_ACTIVE_LOW>; 

 

                port { 

                        wcam_out: endpoint { 

                                remote-endpoint = <&mipi_in_wcam>; 

                                data-lanes = <1 2>; 

                        }; 

                }; 

        }; 

Note： 

 Pinctrl, declares the necessary pinctrl, which includes reset pin initialization and clk 

iomux 

 Clock, the specified name is xvclk (driver will read clock named xvclk), that is, 24M 

clock. 

 Vdd supply, OV5695 need three power supplies. 
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 Port subnode defines an endpoint that declares a connection to mipi_in_wcam. 

Similarly mipi dphy will reference wcam_out 

 Data-lanes specifies that OV5695 uses two lanes 

4.7  Sensor debug and frequently ask questions 

4.7.1 Is the sensor registered successfully? 

The first key point for sensor debugging is whether i2c can communicate successfully 

and chip id check is correct. If so, it can generally indicate that there is no problem with 

power-on sequence.The related log will usually be printed out in driver. Logs of different 

sensors are not the same, it will not take examples here. Second, check media-ctl 

topology to see if sensor is already registered as an entity. If so, sensor has been 

registered successfully. 

4.7.2 Is there data output from sensor? 

Direct measurement of hardware MIPI signal CLK and Data Lane is the most accurate 

method if conditions permit. Is there a signal output, and whether the signal amplitude is 

correct, etc. 

If there is an interruption in CIF or ISP can be judged by software. For example, if 

kernel log has errors reported by CIF or ISP. 

4.7.3 Check if controls are in effect 

The v4l2-ctl can be used to set related parameters, such as gain, exposure, blanking 

and generate images to see if controls of sensors are in effect. For example, increase 

gain or exposure, whether the brightness of pictures increases; when increase blanking, 

whether frame rate drops. 

4.7.4  Frequently asked questions and answers 

Q： It has been repeatedly checked that power-on sequence meets the datasheet 

requirements, but I2c communication is unsuccessful. 

A： It has encountered several reasons before, as follows 

 Io domain setting is incorrect, causing i2c clk and data output amplitudes to be 

incorrect (although there are waveforms). For example, power supply is 1.8v, but 

the io domain is set to 3.3v. 
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 Regulator start up delay is too large, resulting in the fact that although power-up 

sequence configured in the code is correct, the actual measurement still does not 

meet the requirements. For example, the regulator used by OV2685 pp1250_dvdd 

on a board is valid from input to output, and has a delay of 740 us, causing power 

on is too slowly and timing sequence is error. 

 I2C slave address configuration is wrong
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5 The v4l-utils tool and applications 
The v4l-utils tool is a V4L2 development kit maintained by Linuxtv[1]. It provides a set 

of V4L2 and media framework related tools for configuring V4L2 sub-device properties, 

testing V4L2 devices, and providing development libraries such as libv4l2.so and so on. 

This chapter mainly introduces two command-line tools in v4l-utils: media-ctl and v4l2-

ctl 

 media-ctl, used to view and configure topology 

 v4l2-ctl, used to configure v4l2 controls, capture frames, set cif, isp, sensor 

parameters 

The format code of different versions of v4l-utils will be different, especially mbus-fmt 

part. The version used in this document is v4l-utils-1.14.1 integrated in Linux SDK. 

5.1  Obtain and compile v4l-utils 

In the Linux SDK released by Rockchip, v4l-utils package has been integrated by 

default. Users can turn v4l-utils package on or off with buildroot compile switch. In the 

buildroot/configs/rockchip_px3se_defconfig file of SDK directory, the following line opens 

v4l-utils compile option: 

BR2_PACKAGE_LIBV4L_UTILS=y 

Users can also get the source code compilation on Linuxtv official website. Please refer 

to wiki for compilation. 

4l-utils package is under ubuntu system, it can also be installed directly through apt 

tool, as follows 

$ sudo apt-get install v4l-utils 

5.2  FourCC 

FourCC is short for Four Character Codes, uses 4 characters (that is 32bit) to name 

image format. In Linux Kernel, it is a macro, and defined as follows: 

#define v4l2_fourcc(a,b,c,d) \ 

(((__u32)(a)<<0)|((__u32)(b)<<8)|((__u32)(c)<<16)|((__u32)(d)<<24)) 

The format defined by FourCC is the format in which image videos are stored in 

memory. This point should be distinguished from mbus-fmt below. 

https://www.linuxtv.org/downloads/v4l-utils/v4l-utils-1.14.1.tar.bz2
https://www.linuxtv.org/downloads/v4l-utils/
https://www.linuxtv.org/wiki/index.php/V4l-utils
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The following are a few of formats commonly used in this document. See videodev2.h 

of kernel code for details. 

Image format FourCC 

V4L2_PIX_FMT_NV12 NV12 

V4L2_PIX_FMT_NV21 NV21 

V4L2_PIX_FMT_NV16 NV16 

V4L2_PIX_FMT_NV61 NV61 

V4L2_PIX_FMT_NV12M NM12 

V4L2_PIX_FMT_YUYV YUYV 

V4L2_PIX_FMT_YUV420 YU12 

V4L2_PIX_FMT_SBGGR10 BG10 

V4L2_PIX_FMT_SGBRG10 GB10 

V4L2_PIX_FMT_SGRBG10 BA10 

V4L2_PIX_FMT_SRGGB10 RG10 

Table 6 Commonly used FourCC code in this document 

 

5.3  mbus-fmt 

The mbus-fmt is short for Media Bus Pixel Codes which describes the format used for 

transmission over physical bus, such as the image format that sensor transmits to ISP 

via mipi dphy, or the format transmitted between submodules within ISP. In particular, it 

is necessary to distinguish Mbus-fmt from FourCC of the previous chapter, which is 

specifically the image format stored in Memory. 

The following table lists several Mbus-fmts commonly used in this document. 

Name Type Bpp Bus width 
Sampes per 

Pixel 

MEDIA_BUS_FMT_SBGGR10_1X10 Bayer Raw 10 10 1 

MEDIA_BUS_FMT_SGBRG10_1X10 Bayer Raw 10 10 1 

MEDIA_BUS_FMT_YUYV8_2X8 YUV:422 16 8 2 

MEDIA_BUS_FMT_YUYV8_1_5X8 YUV:420 12 8 1.5 

Table 7 Several mbus-fmt commonly used in this document 

The latest media-ctl can list the supported mbus code as follows: 

media-ctl --known-mbus-fmts 

 

5.4  Media-ctl and topology 

Media-ctl is a tool in v4l-utils package. It is mainly used to configure fmt, size, and link 

https://github.com/torvalds/linux/blob/master/include/uapi/linux/videodev2.h
https://www.linuxtv.org/downloads/v4l-dvb-apis-new/uapi/v4l/subdev-formats.html
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nodes of media framework. Users can query the usage method by the following help. 

This chapter will also introduce several common examples. 

[root@px3se:/]# media-ctl --help 

media-ctl [options] 

-d, --device dev        Media device name (default: /dev/media0) 

-e, --entity name       Print the device name associated with the given entity 

-V, --set-v4l2 v4l2     Comma-separated list of formats to setup 

    --get-v4l2 pad      Print the active format on a given pad 

    --set-dv pad        Configure DV timings on a given pad 

-h, --help              Show verbose help and exit 

-i, --interactive       Modify links interactively 

-l, --links links       Comma-separated list of link descriptors to setup 

    --known-mbus-fmts   List known media bus formats and their numeric values 

-p, --print-topology    Print the device topology. If an entity 

                        is specified through the -e option, print 

                        information for that entity only. 

    --print-dot         Print the device topology as a dot graph 

-r, --reset             Reset all links to inactive 

-v, --verbose           Be verbose 

................... 

 

5.4.1 Media-ctl: topology 

If driver supports Media Controller, a media device such as /dev/media0 will be created 

after CIF or ISP is successfully loaded. Media-ctl is used to print out the current pipeline 

link. 

The next few chapter describe some cases of CIF and ISP topologies. 

 

5.4.2 Case 1: CIF topology 

CIF topology in figure 2 is cif topological structure of px3se evb board. ADV7181 is 

linked to CIF Sink as a sub-device source. 
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Figure 2 CIF topology 

Topology can be printed out via media-ctl as follows (with deletion). 

[root@px3se:/]# media-ctl -p /dev/media0  

Media controller API version 0.1.0 

------------------------ 

driver          rkcif 

Device topology 

- entity 1: stream_cif (1 pad, 1 link) 

            type Node subtype V4L flags 0 

            device node name /dev/video0 

        pad0: Sink 

                <- "adv7181 2-0021":0 [ENABLED] 

- entity 2: adv7181 2-0021 (1 pad, 1 link) 

            type V4L2 subdev subtype Sensor flags 0 

            device node name /dev/v4l-subdev0 

        pad0: Source 

                [fmt:UYVY8_2X8/720x480 field:none colorspace:smpte170m] 

                -> "stream_cif":0 [ENABLED] 
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5.4.3 Case 2: ISP camera topology 

Taking RK3326 EVB as an example, sensor Ov5695 is connected to mipi dphy via mipi 

bus; after ISP collects mipi data, the corresponding image processing is performed by isp 

entity, such as demosaicing; mp, sp can configure the format and resolution of 

respective output frame data. 

Print out more information through media-ctl, such as the input and output format and 

size of current entity, whether it has crop and resize capabilities. The following is the 

media topology of RK3326 EVB 

[root@rk3326_64:/]# media-ctl -d /dev/media1 -p 

Media controller API version 0.1.0 

 

Media device information 

------------------------ 

driver          rkisp1 

model           rkisp1 

serial           

bus info         

hw revision     0x0 

driver version  0.0.0 

 

Device topology 

- entity 1: rkisp1-isp-subdev (4 pads, 5 links) 

            type V4L2 subdev subtype Unknown flags 0 

            device node name /dev/v4l-subdev0 

        pad0: Sink 

                [fmt:SBGGR10_1X10/2592x1944 field:none 

                 crop.bounds:(0,0)/2592x1944 

                 crop:(0,0)/2592x1944] 

                <- "rockchip-mipi-dphy-rx":1 [ENABLED] 

        pad1: Sink 
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                <- "rkisp1-input-params":0 [ENABLED] 

        pad2: Source 

                [fmt:YUYV8_2X8/2592x1944 field:none 

                 crop.bounds:(0,0)/2592x1944 

                 crop:(0,0)/2592x1944] 

                -> "rkisp1_selfpath":0 [ENABLED] 

                -> "rkisp1_mainpath":0 [ENABLED] 

        pad3: Source 

                -> "rkisp1-statistics":0 [ENABLED] 

 

- entity 2: rkisp1_mainpath (1 pad, 1 link) 

            type Node subtype V4L flags 0 

            device node name /dev/video1 

        pad0: Sink 

                <- "rkisp1-isp-subdev":2 [ENABLED] 

 

- entity 3: rkisp1_selfpath (1 pad, 1 link) 

            type Node subtype V4L flags 0 

            device node name /dev/video2 

        pad0: Sink 

                <- "rkisp1-isp-subdev":2 [ENABLED] 

 

- entity 4: rkisp1-statistics (1 pad, 1 link) 

            type Node subtype V4L flags 0 

            device node name /dev/video3 

        pad0: Sink 

                <- "rkisp1-isp-subdev":3 [ENABLED] 

 

- entity 5: rkisp1-input-params (1 pad, 1 link) 

            type Node subtype V4L flags 0 

            device node name /dev/video4 
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        pad0: Source 

                -> "rkisp1-isp-subdev":1 [ENABLED] 

 

- entity 6: rockchip-mipi-dphy-rx (2 pads, 2 links) 

            type V4L2 subdev subtype Unknown flags 0 

            device node name /dev/v4l-subdev1 

        pad0: Sink 

                [fmt:SBGGR10_1X10/2592x1944 field:none] 

                <- "ov5695 2-0036":0 [ENABLED] 

        pad1: Source 

                [fmt:SBGGR10_1X10/2592x1944 field:none] 

                -> "rkisp1-isp-subdev":0 [ENABLED] 

 

- entity 7: ov5695 2-0036 (1 pad, 1 link) 

            type V4L2 subdev subtype Sensor flags 0 

            device node name /dev/v4l-subdev2 

        pad0: Source 

                [fmt:SBGGR10_1X10/2592x1944@10000/300000 field:none] 

                -> "rockchip-mipi-dphy-rx":0 [ENABLED] 

 

5.4.4 Media-ctl: entity, pad and link 

Entity represents a node in Media Controller. It contains one or more input and output 

pads. Link represents a link that connects multiple different pads. Multiple links form a 

complete pipeline. 

The name of Entity can be viewed from topology. For example, the following are the 

names of entity. 

 ov5695 2-0036 

 rkisp1-isp-subdev 

 rkisp1_mainpath 

Pad is represented by a number. An Entity can contain multiple pads, either Source or 
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Sink. 

Link connects two "entities": pad, such as the link shown below, 

 "rkisp1-isp-subdev":2->"rkisp1_mainpath":0 

 "rkisp1-isp-subdev":3->"rkisp1-statistics":0 

The status of link can be Active or In-Active. 

Media Controller provides a flexible configuration of pipeline. In CIF and ISP driver 

initialization process, Link is completely established according to configurations. If there 

are multiple sensors, one of them will be activated. 

You can use media-ctl command to modify active state of Link. You can also modify 

format and size of Pad. 

5.4.5 Media-ctl: In-/Active Link 

The following error: The reference source is not found, two sensors are connected to 

the same mipi dphy, and sensor can be enabled or disabled by userspace. Ov5695 and 

Ov2685 sensors are connected to mipi dphy via mipi bus. The two sensors in this Case 

can only have one be enabled at a time. 

 
Figure 3 ISP Dual Camera topology 

Error: The reference source was not found. There are multiple sensors connected to the 

same Mipi D-Phy, and only one of them can be active. The following example sets 

ov2659 to active 
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#First set ov5695 to In-Active 

media-ctl -d /dev/media1 -l '"ov5695 2-0036":0->"rockchip-mipi-dphy-rx":0[0]' 

#Then set ov2685 to Active 

media-ctl -d /dev/media1 -l '"ov2685 2-003c":0->"rockchip-mipi-dphy-rx":0[1]' 

Note： 

 Format: media-ctl -l '"entity name":pad->"entity name":pad[Status]' 

 The entire link needs to use single quotes because there are special characters 

like > [ ] 

 Entity name needs to use double quotes because there is a space in between 

 Status with 0 or 1 indicates Active or In-Active and need to use brackets [ ] 

 

5.4.6 Media-ctl: modify fmt/size 

Error: reference source is not found, the following example shows how to modify 

fmt/size 

Example 1, modify the size of ov5695 output to 640x480 (The precondition is that 

ov5695 driver already supports 640x480 output, otherwise the setting will not succeed), 

and set the input and output resolution of the entire pipeline to 640x480, and the format 

of isp entity is YUYV. 

# Set the sensor output to 640x480 

media-ctl -d /dev/media0 \ 

--set-v4l2 '"ov5695 7-0036":0[fmt:SBGGR10_1X10/640x480]' 

# Set isp receiving (from mipi dphy) format and size, the format requirements are the 

same as sensor output 

media-ctl -d /dev/media0 \ 

--set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10_1X10/640x480]' 

# isp Receiving size can be cropped, but still keep 640x480 here 

media-ctl -d /dev/media0 \ 

--set-v4l2 '"rkisp1-isp-subdev":0[crop:(0,0)/640x480]'  

# Set isp output, YUV format can only be YUYV2X8 

media-ctl -d /dev/media0 \ 
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--set-v4l2 '"rkisp1-isp-subdev":2[fmt:YUYV8_2X8/640x480]' 

# isp output also has crop function, but also keep 640x480 

media-ctl -d /dev/media0 \ 

--set-v4l2 '"rkisp1-isp-subdev":2[crop:(0,0)/640x480]' 

Note： 

 Different versions of v4l-utils may have different fmt codes, preferably use media-

ctl 

media-ctl --known-mbus-fmts 

 Pay attention to special characters, single or double quotes is needed 

 Be careful not to leave spaces in quotes, and don't leave more spaces. 

 Please use media-ctl --help to see more detailed help 

 

5.5  The fmt, controls and grab frames Configurations by 

v4l2-ctl 

The operation of Media-ctl tool is through media devices such as /dev/medio0, which 

manages the format, size, and link of each node in the topology of media. V4l2-ctl tool is 

for video devices such as /dev/video0, /dev/video1, and it performs set_fmt, reqbuf, 

qbuf, dqbuf, stream_on, stream_off and other operations on video devices. 

In this document, we mainly use v4l2-ctl to collect frame data, and set v4l2_control 

such as exposure, gain, VTS, etc. 

First of all, it is recommended to first check the help file of v4l2-ctl. Help document 

contents are so much and divided into many parts, we are more concerned about 

streaming, vidcap. 

View help document outline as follows 

$ v4l2-ctl --help 

See the full help document below with a lot of contents. 

$ v4l2-ctl --help-all 

View the parameters related to streaming as follows. 

$ v4l2-ctl --help-streaming 

View parameters related to vidcap as follows. It mainly includes get-fmt, set-fmt and 
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so on. 

$ v4l2-ctl --help-vidcap 

 

5.5.1 Set fmt and grab frames 

For specific use of V4l2-ctl, please refer to v4l-utils tool and application. Only px3se-

evb board is taken as an example here. Generally, CIF media topology is very simple, 

with only one sensor and cif two entities. If the output format and size of sensor do not 

need to be modified and the default value is used, you do not need media-ctl 

configuration to grab a frame directly using v4l2-ctl. The following only need to specify 

the related parameters such as fmt, count. 

v4l2-ctl -d /dev/video0 \ 

--set-fmt-video=width=720,height=480,pixelformat=NV12 \ 

        --stream-mmap=3 \ 

        --stream-skip=3 \ 

        --stream-to=/tmp/cif.out \ 

        --stream-count=1 \ 

        --stream-poll 

Note of the parameters: 

 -d, specify the operation object as /dev/video0 device 

 --set-fmt-video, specify width and height and pxielformat 

 NV12, that is, pixelformat represented by FourCC. See FourCC code above for 

details. 

 --stream-mmap, specified buffer type as mmap, which is physical continuous or 

iohmu mapped buffer allocated by kernel. 

 --stream-skip, specify the first 3 frames of discard (not saved to file) 

 --stream-to, specify the file path where frame data is saved 

 --stream-count, specifies the number of frames to grab, excluding the number of --

stream-skip drops 

 --stream-poll, this option indicates v4l2-ctl uses asynchronous IO, in other word, 

using the select until frame data is complete before dqbuf to ensure that dqbuf 

does not block. Otherwise dqbuf will block until a data frame arrives. 
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5.5.2 Set control sush as exposure, gain, etc.  

If sensor driver has implemented v4l2 control, such as exposure, gain, etc. can be set 

by v4l2-ctl before an image is acquired. 

CIF or ISP will inherit control of sub device, so you can see v4l2 control of sensor 

through /dev/video3. The following are the related settings of OV5695 viewed on Dru 

machine, including exposure, gain, blanking, test_pattern, etc. 

localhost /tmp # v4l2-ctl -d /dev/video3 -l 

User Controls 

exposure (int)    : min=4 max=2020 step=1 default=1104 value=1104 

gain (int)    : min=0 max=16383 step=1 default=1024 value=1024 

Image Source Controls 

vertical_blanking (int)    : min=40 max=31795 step=1 default=40 value=80 

horizontal_blanking (int)    : min=1664 max=1664 step=1 default=1664     

analogue_gain (int)    : min=16 max=248 step=1 default=248 value=248 

Image Processing Controls 

link_frequency (intmenu): min=0 max=0 default=0 value=0 flags=read-only 

  pixel_rate (int64)  : min=0 max=180000000 step=1 default=180000000 

value=180000000 flags=read-only 

  test_pattern (menu)   : min=0 max=4 default=0 value=0 

These controls can be modified with v4l2-ctl. Such as modifying exposure and 

analogue_gain as follows 

v4l2-ctl -d /dev/video3 --set-ctrl 'exposure=1216,analogue_gain=10' 

Note： 

 If there are special characters, it require single quotes 

 If multiple cameras are connected to the same ISP, only the control of the first 

sensor can be viewed and modified. Are there bugs in V4l2-ctl, or is it because the 

driver does not implement G/S_INPUT? 

 

5.5.3 Play back frames on Ubuntu with mplayer 

After the captured frame data is saved to a file, images can be played back on PC. For 
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example, on ubuntu you can play with mplayer. 

W=720; H=480; mplayer /tmp/cif.out -loop 0 -demuxer rawvideo -fps 25 \ 

-rawvideo w=${W}:h=${H}:size=$((${W}*${H}*3/2)):format=nv12 

For more detailed usage of mplayer, please refer to mplayer manual
[1]

, or online 

tutorial. 

 

5.5.4  Set fmt and grab raw data of Raw Bayer 

The rkisp driver will synchronize format/size information of currently connected sensor, 

and set on nodes of each pipeline. You do not need to go through the upper layer 

settings. If you need to set custom format/size to each pipeline, refer to the following 

example. 

For example, grab raw data of Raw Bayer from sensor OV5695 output. The format is 

SBGGR10_1X10 and the size is 2592x1944. 

media-ctl -d /dev/media1 --set-v4l2 '"ov5695 2-0036":0[fmt:SBGGR10_1X10/2592x1944]' 

media-ctl -d /dev/media1 --set-v4l2 '"rkisp1-isp-subdev":0[fmt:SBGGR10_1X10/2592x1944]' 

media-ctl -d /dev/media1 --set-v4l2 '"rkisp1-isp-subdev":0[crop:(0,0)/2592x1944]' 

media-ctl -d /dev/media1 --set-v4l2 '"rkisp1-isp-subdev":2[fmt:SBGGR10_1X10/2592x1944]' 

media-ctl -d /dev/media1 --set-v4l2 '"rkisp1-isp-subdev":2[crop:(0,0)/2592x1944]' 

v4l2-ctl -d /dev/video1 --set-ctrl 'exposure=1216,analogue_gain=10' \ 

  --set-selection=target=crop,top=0,left=0,width=2592,height=1944 \ 

  --set-fmt-video=width=2592,height=1944,pixelformat=BG10 \ 

  --stream-mmap=3 --stream-to=/tmp/mp.raw.out --stream-count=1 --stream-poll 

Note： 

 media-ctl in Line 4 sets the isp-subdev output format to be consistent with sensor 

 Lines 3 and 5 set crop to be the same size as sensor, in other word, not cropped. 

 On line 6, if the graph is too dark, you can adjust exposure and gain to increase 

brightness. Optional, and sensor driver needs to implement v4l2 control 

 On line 7, v4l2-ctl sets selection not to crop, and output pixelformat FourCC is 

BG10. 

                                        
1 [] If mplayer is installed on Ubuntu, use the command man mplayer to view mplayer manual. 
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 It is important to note that although ISP does not process raw graph, it will still fill 

the low bit of 10 bit data with 0 to form 16bit. Regardless of whether sensor input 

is 10bit, 12bit, the upper layer is always 16bit per pixel. 

 

5.5.5 Bayer Raw gragh converted to PGM 

Adding PGM sign to the head of Bayer Raw file to change to pgm graph which can be 

directly opened under Ubuntu
[1]

, only need to add three rows of PGM headers. Users often 

get a carriage return error when adding a pgm header. One more empty line will cause 

failing to open pgm graph. The following command can be used directly to generate pgm 

header and append raw to the end of pgm header. Append bayer raw data to the end of 

raw.pgm as follows. In this way /tmp/raw.pgm can be viewed directly. Note that file 

appends require two '>'s. 

You can write raw2pgm.sh script as follows 

#!/bin/bash 

cat > /tmp/raw.pgm << EOF  

P5 

2592 1944 

65535 

cat $1 >> /tmp/raw.pgm 

Note,  

 Line 1, P5 is a fixed identifier 

 Line 2, which represents the resolution of Raw graph, that is length and width, 

separated by a space character. 

 Line 3, indicating depth, 65535 is 16 bits. If it is 8bit, change it to 255 accordingly. 

Just add a frame of RAW file to be converted after script. 

./raw2gpm.sh mp.raw

                                        
1 [] It seems to need to install other tools to find pgm files under Windows. You can also open the 
bayer raw map with photoshop, but you also need to set the width and height, bpp. 



46 

Rockchip Developer Guide                                              GStreamer preview  

Copyright © 2019 Fuzhou Rockchip Electronics Co., Ltd.  

6 GStreamer preview 

6.1  gst-launch-1.0 command 

Under Rockchip latest Linux SDKs, GStreamer commands are the same. Whether they 

are CIF/ISP or UVC Cameras, GStreamer can capture camera images from V4L2 devices. 

For preview tests without 3A effects, you can use the following command to preview 

camera images with GStreamer, the precondition is that it can use v4l2-ctl to capture 

images. RKISP1 driver layer will configure pipeline according to the properties of 

connected sensor, set isp-subdev input and output size, etc. If you need to customize 

resolution format and other attributes, please read the previous chapter. 

6.1.1 gst-launch-1.0 command preview  

export XDG_RUNTIME_DIR=/tmp/.xdg 

gst-launch-1.0 --gst-debug=3 v4l2src device=/dev/video1 ! videoconvert ! \ 

video/x-raw,format=NV12,width=640,height=480 ! kmssink 

Please refer to docs documents published with SDK for the use of GStreamer. 

--gst-debug=3: Print level, the higher the value, the higher the print information. 

Device=/dev/video1: specifies camera device node that is open, is video0 by default 

Videoconvert: converts src data format to a data format that sink can display 

Video/x-raw, format=NV12, width=640, height=480: display data format of sink  

Kmssink: display plugin 

6.1.2  Save a file by gst-launch-1.0 command  

To save a local file, just replace sink plugin, take 10 frames of data as an example: 

gst-launch-1.0 v4l2src  device=/dev/video1 num-buffers=10 ! \ 

video/x-raw,format=NV12,width=640,height=480, framerate=30/1 ! \ 

videoconvert !  filesink location=/tmp/test.yuv 

 

6.2  GStreamer application programming 

The Linux SDKs released by Rockchip are integrated with GStreamer and can be used 

to preview images. This chapter describes how to write a simple camera preview program 

using GStreamer. 
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First, you should call gst_init() in the main function to complete the corresponding 

initialization works, so that the parameters input by users from command line are passed 

to GStreamer function library. One typical GStreamer initialization application is as 

follows: 

#include <gst/gst.h> 

int main(int argc, char *argv[]) { 

 /* Initialize GStreamer */ 

 gst_init (&argc, &argv); 

} 

Create a GMainLoop object with g_main_loop_new(). 

/* create main loop, start to loop after running g_main_loop_run */ 

loop = g_main_loop_new(NULL, -1); 

Pipeline is used to contain and manage element in GStreamer framework. The following 

code creates a new pipeline called uvc-camera: 

pipeline = gst_pipeline_new("uvc-camera"); 

Create a data source element by using v4l2src, the element is responsible for obtaining 

data from camera 

source = gst_element_factory_make("v4l2src", "camera-input"); 

Set some properties of v4l2src 

/* set source parameters */ 

g_object_set(G_OBJECT(source), "device", argv[1], NULL); 

 

source_capsfilter = gst_element_factory_make("capsfilter", "source_capsfilter"); 

 source_caps = gst_caps_new_simple ("video/x-raw", 

               "format", G_TYPE_STRING, "YUY2", 

               "width", G_TYPE_INT, 640, 

               "height", G_TYPE_INT, 480, 

               NULL); 

g_object_set(G_OBJECT(source_capsfilter),"caps", source_caps, NULL); 

Create converter element and sink element.  

/* create converter element */ 
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converter = gst_element_factory_make("videoconvert", "video-converter"); 

/* create sink element */ 

 sink = gst_element_factory_make("autovideosink", "camera-output"); 

Add a message handler function bus_call to monitor the generated message. 

/* Wait until error or EOS */ 

bus = gst_element_get_bus (pipeline); 

gst_bus_add_watch(bus, bus_call, loop); 

gst_object_unref(bus); 

The three elements that have been created need to be all added to pipeline and 

connected in order. 

/* add elements to pipeline */ 

gst_bin_add_many(GST_BIN(pipeline), source, source_capsfilter, converter, sink, NULL); 

/* connect elements sequentially */ 

gst_element_link_many(source, source_capsfilter, converter, sink, NULL); 

After all the preparations are completed, you can start the data processing of the entire 

pipeline by switching the state of pipeline to PLAYING state. 

gst_element_set_state(pipeline, GST_STATE_PLAYING); 

Enter the main loop, it will block here until it is allowed to exit. When there is an event, 

it deals with the event and sleeps when there is no event. 

/* start to loop */ 

g_main_loop_run(loop); 

Quit pipeline and release resources 

/* quit loop and return */ 

g_print("Returned,stopping playback\n"); 

gst_element_set_state(pipeline, GST_STATE_NULL); 

gst_object_unref(GST_OBJECT(pipeline)); 

You can test the program directly with a PC and the compile command is as follows. 

The development board test has to use the cross-compilation toolchain to complie. 

gcc gst-video.c -o gst-video `pkg-config --cflags --libs gstreamer-1.0` 
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Figure 4 The gst-video application preview 

The whole code is as follows 

#include <gst/gst.h> 

#include <glib.h> 

#include <stdio.h> 

#include <stdbool.h> 

 

/* message processing */ 

static gboolean bus_call(GstBus * bus, GstMessage * msg, gpointer data) 

{ 

    GMainLoop *loop = (GMainLoop *) data; 

 

    switch (GST_MESSAGE_TYPE(msg)) 

    { 

 

        case GST_MESSAGE_EOS: 

            g_print("End of stream\n"); 

            g_main_loop_quit(loop); 

            break; 

        case GST_MESSAGE_ERROR: 
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            { 

                gchar *debug; 

                GError *error; 

                gst_message_parse_error(msg, &error, &debug); 

                g_free(debug); 

                g_printerr("ERROR:%s\n", error->message); 

                g_error_free(error); 

                g_main_loop_quit(loop); 

                break; 

            } 

        default: 

            break; 

    } 

 

    return 1; 

} 

 

int main(int argc, char *argv[]) { 

 

 GMainLoop *loop; 

 GstElement *pipeline, *source, *converter, *sink, *vqueue; 

 GstElement *source_capsfilter; 

 GstCaps *source_caps; 

 GstBus *bus; 

 

 /* Initialize GStreamer */ 

 gst_init (&argc, &argv); 

 if (argc < 2) 

 { 

     g_printerr("Usage:%s [camera device name] for camera capture. eg(./gst-video 

/dev/video0)\n", argv[0]); 
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     return -1; 

 } 

 /* create main loop, start to loop after running g_main_loop_run */ 

 loop = g_main_loop_new(NULL, -1); 

 /* create pipeline and element */ 

 pipeline = gst_pipeline_new("uvc-camera"); 

 source = gst_element_factory_make("v4l2src", "camera-input"); 

 /* set source parameters */ 

 g_object_set(G_OBJECT(source), "device", argv[1], NULL); 

 

 source_capsfilter = gst_element_factory_make("capsfilter", "source_capsfilter"); 

 source_caps = gst_caps_new_simple ("video/x-raw", 

               "format", G_TYPE_STRING, "YUY2", 

               "width", G_TYPE_INT, 640, 

               "height", G_TYPE_INT, 480, 

               NULL); 

 g_object_set(G_OBJECT(source_capsfilter),"caps", source_caps, NULL); 

 

 /* create converter element */ 

 converter = gst_element_factory_make("videoconvert", "video-converter"); 

 /* create sink element */ 

  sink = gst_element_factory_make("autovideosink", "camera-output"); 

 

 if (!pipeline || !source || !source_capsfilter || !converter || !sink) 

 { 

  g_printerr("One element could not be created.Exiting.\n"); 

  return -1; 

 } 

 /* Wait until error or EOS */ 

 bus = gst_element_get_bus (pipeline); 

 gst_bus_add_watch(bus, bus_call, loop); 
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 gst_object_unref(bus); 

 /* add elements to pipeline */ 

 gst_bin_add_many(GST_BIN(pipeline), source, source_capsfilter, converter, sink, NULL); 

 /* connect elements sequentially */ 

 gst_element_link_many(source, source_capsfilter, converter, sink, NULL); 

   

 gst_element_set_state(pipeline, GST_STATE_PLAYING); 

 g_print("Running\n"); 

 

 /* start to loop */ 

 g_main_loop_run(loop); 

 

 /* quit loop and return */ 

 g_print("Returned,stopping playback\n"); 

 gst_element_set_state(pipeline, GST_STATE_NULL); 

 gst_object_unref(GST_OBJECT(pipeline)); 

 return 0;
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7 3A Function integration 
The sensor output is Bayer Raw which is converted to YUV format application case after 

ISP processing, later need to use ISP's 3A function tuning IQ. IQ tuning requires 

customers to submit an application to Rockchip via sales window, providing typical 

modules and machines to be debugged by Rockchip. Please consult sales for details. 

The compilation, installation and use of the main 3A libraries in this chapter are 

described in the docs/Develop reference documents/CAMERA/ 

"camera_engine_rkisp_user_manual_v1.0.pdf" document published with Linux SDK. 

Please read this document first, no detailed explanation will be given here. 

Finally, an xml file is generated for sensor (including lens) (assuming it is named 

OV5695.xml). At the same time, four so libraries will be provided which is generated by 

the camera_engine_rkisp project and located in the external directory
[1]

, Buildroot will 

automatically copy the four libraries to the corresponding directory, If there is no 3A 

library in Debian, please install it by yourself. 

 OV5695.xml: 3A tuning IQ file. Please put it in the /etc/files/ directory. The 

etc/init.d/S50link_iq script in buildroot will match the name of the sensor connected by 

ISP after booting, match the xml of the same name in the /etc/files/ directory, and 

create a link file cam_iq.xml, for squash read-only file systems, script is invalid. 

 librkisp.so: The main function of core engine is to obtain driving data stream and 

implement upper layer frame parameter control, such as 3A mode. The 3A statistics are 

obtained from ISP driver, and 3A library is called to implement 3A adjustment. The class 

interface provided for upper layer is DeviceManager which is saved in a /usr/lib/ directory 

on development boards. 

 librkisp_aec.so: The auto-exposure library implemented by RK is implemented as a 

dynamic loading library with a standard interface, which is saved in /usr/lib/rkisp/ae/ 

directory on development boards. 

 librkisp_af.so: The autofocus library implemented by RK is implemented as a 

dynamic loading library with a standard interface, which is saved in /usr/lib/rkisp/af/ 

directory of development boards. 

                                        
1 [] If there is no rkisp_demo in user's Linux SDK, please update or request the source code from 
FAE. 
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 librkisp_awb.so: The white balance library implemented by RK is implemented as a 

dynamic load library with a standard interface. Which is saved in /usr/lib/rkisp/awb/ 

directory on development boards. 

How applications calls 3A related functions, can also refer to the docs/Develop 

reference documents/CAMERA/ "camera_engine_rkisp_user_manual_v1.0.pdf" released 

with Linux SDK. Simple demo, you can also refer to Applications development and demo. 

 

7.1  Applications development and demo 

There is an external/camera_engine_rkisp repository with the Linux SDK released, the 

camera_engine_rkisp/tests/rkisp_demo.c simply uses v4l2 interface to configure device 

and simply calls 3A interface. Please refer to the source code directly. 

Applications development, you can also directly refer to v4l2-utils source package 

(libv4l-1.14.1/utils/v4l2-ctl), the the so provided by which can also be used directly. 

Or simply refer to the official website https://linuxtv.org/downloads/v4l-dvb-apis-

new/uapi/v4l/v4l2.html 

Note: The above buff type of the official website application only supports 

V4L2_BUF_TYPE_VIDEO_CAPTURE, and the buff type used by RKisp driver layer is 

V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE which is used for video capture devices in 

multi-plane storage format, so the buff of application layer also has to match this type, 

and rkisp_demo.c and v4l2-ctl also add this type. 

 

7.2  Gstreamer-1.0  3A plug-in 

Rockchip has integrated 3A function into plug-in. The above 

"camera_engine_rkisp_user_manual_v1.0" document described the use of 3A library and 

the included gstreamer plug-in (libgstrkisp.so) in details. 

A new plug-in rkv4l2src based on gstreamer-1.14 has been wrote by Rockchip. The 

project is located in external/gst-plugins-rockchip. The rkv4l2src is a simple elements 

plug-in which collects data based on v4l2 protocol and adds 3A function provided by 

camera_engine_rkisp. This plug-in can be run under Buildroot and Debian (gstreamer 

upgrade 1.14). 

https://wx.qq.com/cgi-bin/mmwebwx-bin/webwxcheckurl?requrl=https%3A%2F%2Flinuxtv.org%2Fdownloads%2Fv4l-dvb-apis-new%2Fuapi%2Fv4l%2Fv4l2.html&skey=@crypt_10935f6e_baac68d73f1b8b0e61e424a3a8136bc6&deviceid=e338334364798187&pass_ticket=Dww0eTyp%252FDroL11YSEzhwh1GtxGshT4erqTSscTdiyI88aWs8RPsbFrGJf%252BV22iF&opcode=2&scene=1&username=@7d3607102ee7ee85f15ba0cd9d89a5bd5cc8a1ae120d7f14c7d785567d2c5454
https://wx.qq.com/cgi-bin/mmwebwx-bin/webwxcheckurl?requrl=https%3A%2F%2Flinuxtv.org%2Fdownloads%2Fv4l-dvb-apis-new%2Fuapi%2Fv4l%2Fv4l2.html&skey=@crypt_10935f6e_baac68d73f1b8b0e61e424a3a8136bc6&deviceid=e338334364798187&pass_ticket=Dww0eTyp%252FDroL11YSEzhwh1GtxGshT4erqTSscTdiyI88aWs8RPsbFrGJf%252BV22iF&opcode=2&scene=1&username=@7d3607102ee7ee85f15ba0cd9d89a5bd5cc8a1ae120d7f14c7d785567d2c5454
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1. Whether it is Buildroot or Debian, you must first confirm whether the 3A library 

exists. For rkisp1 driver, there are four 3A libraries: librkisp.so, librkisp_aec.so, 

librkisp_af.so, librkisp_awb.so. 

 

2. Storage path of Gstreamer plugin of Buildroot and Debian are different, Buildroot is 

stored in /usr/lib/gstreamer-1.0/libgstrkv4l2.so, Debian is stored in /usr/lib/aarch64-

linux-gnu/gstreamer-1.0/libgstrkv4l2.so. After confirming that libgstrkv4l2.so exists, you 

can view the plugin details through gst-inspect-1.0 rkv4l2src 

gst-inspect-1.0 rkv4l2src 

   
Figure 5 rkv4l2src plug-in information 

3, After confirming that v4l2src can be previewed, you can test 3A plugin preview 

directly with gst-launch-1.0. 

gst--launch-1.0 rkv4l2src device=/dev/video1 xml-path=/etc/cam_iq.xml ! video/x-

raw,format=NV12,width=640,height=480, framerate=30/1 ! videoconvert ! kmssink 

xml-path=/etc/cam_iq.xml: Specify 3A xml file, the default path is /etc/cam_iq.xml 
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7.3  Media device development demo 

7.4  Video device development demo 

7.5  V4l-subdev device development demo 
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8 Rk-isp10 driver introduction 
Rk-isp10 does not use media-controller and async sub device, but supports vb2 and 

v4l2 interfaces. And the rk-isp10 driver integration and the most simplified sensor 

development. For rk-isp10 (the other name is cif-isp10) driver, please refer to 

"CIF_ISP10_Driver_User_Manual_v1.0.pdf" and 

"RK_ISP10_Camera_User_Manual_v2.2.pdf" released with Linux SDKs. 

It mainly introduces the difference between rkisp1 and rk-isp10 here. 

First, they are different driver implementations of the same hardware IP. 

RKISP1 is based on media controller, async sub device, vb2 and v4l2 interfaces. RK-

ISP10 does not have a media controller and async sub device. Therefore, RKISP1 can be 

considered to provide a more rich and free pipeline setting, while RK-ISP10 provides 

users with the simplest and quickest use. 

RK-ISP10 combines CIF and ISP into one driver. The CIF and ISP described in this 

document are independent of each other. 

RK-ISP10 has a set of sensor-driven frameworks, the code is located at 

drivers/media/i2c/soc_camera/rockchip/. The CIF and ISP described in this document use 

the drivers that match async sub device in drivers/media/i2c/ directory. 

The Rkisp1 driver coding style is more pithily, and the number of lines of code is only 

half that of rk-isp10. 

 


